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Abstract 

The power spectrum of a built-in kink chain oscillating in an atmosphere of paraelastic interstitials was investigated 
numerically using a fast Fourier transform technique. Above a sharply defined value of the strain amplitude, 
odd-harmonic generation is observed only at the low-temperature side of the dislocation relaxation peak associated 
with interstitial-kink interaction. At moderately high strain amplitudes, a strong enhancement of the harmonics 
situated in the immediate vicinity of the natural resonance frequency of the chain and complete depression of 
the rest are clearly seen. Finally, the onset of quasi-chaotic kink oscillations is detected when the system is 
driven into the super-Snoek regime where atmospheric tearing takes place. 

1. Introduction correlation function [4] for several values of the nor- 
malized field variables. 

The investigation of the forced vibrational properties 
of non-linear systems is of great importance in numerous 
solid state physics problems. In the context of heat 
conductivity, thermal expansion, lattice dynamics, im- 
purity modes and non-linear optics [l], it has led to 
the development of perturbation techniques that have 
been successful in explaining experimental results. These 
cases all deal with non-linearity in the potential energy 
[2] term (anharmonicity) in the equation of motion 
which may display a set of cascading bifurcations into 
a chaotic state. In a previous paper [3], we studied the 
non-linear Debye-type damping (drag) behaviour of an 
isolated single kink in an atmosphere that displays 
hyposonic and hypersonic viscosity regimes, in the pres- 
ence of high external periodic fields (simple harmonic). 
The computer simulations in this system showed the 
existence of dissipative resonance behaviour with zero 
Q-l factor and the occurrence of unusually sharp (quasi- 
quantum jumps) energy dissipations, similar to Cher- 
enkov radiation, when the kink velocity exceeds the 
atomic hopping velocity of interstitials at high driving 
force amplitudes. In the present investigation, we use 
a more realistic physical model, i.e. a kink chain that 
exhibits non-linear, coulombic, long-range, kink-kink 
interaction, in addition to a cloud of dragging point 
defects which shows non-stokesian viscosity behaviour. 
In order to determine whether the system can exhibit 
high-frequency harmonic generation as well as random 
noise production, we have performed an extensive fast 
Fourier transform (FFT) study of the velocity auto- 

2. The macro mathematical 
damping 

model for kink chain 

The present macro model relies heavily on our pre- 
vious treatment [5] of collective geometric kink oscil- 
lations in an atmosphere of paraelastic interstitials. 
According to our analytical studies, as well as modelling 
experiments [6], on the drag force acting on uniformly 
moving kinks in a cloud of Snoek- and/or Cottrell-type 
heavy interstitials in b.c.c. metals, we can use a Debye- 
type function for the power dissipation term in the 
equation of kink motion. The equation of motion of 
an individual kink in the geometric kink chain can be 
written as 
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where the interaction force F(y’ -y’) should be modified 
at the leading kinks (i= 1 and N,) to take into account 
the pinning strength with respect to the nodal points. 
In this equation, Mk is the effective mass of a kink, y’ 
is the coordinate of the ith kink on a dislocation, B, 
is the viscosity for the kink motion in the newtonian 
region, Ai is the inverse Snoek jump velocity given by 
Ai= rs/ao, T-~ is the Snoek relaxation time, a, is the 
resolved shear stress in the slip plane of the dislocation, 
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b is the magnitude of the Burgers vector, ao is the 
lattice spacing, ak is the spacing between neighbouring 
Peierls valleys and o~ is the oscillation frequency of the 
external drive. 

By_using the following transformation of variables, 
wt=t  (scaling) and ogAtui=y i (stretching), where we 
have scaled the time with respect to the driving frequency 
and also stretched the displacement (space) with respect 
to the length travelled by an interstitial species during 
one period of motion, the following dimensionless set 
of differential equations can be obtained (where i=  2, 
3 ... . .  Nk--1) 

y;'= ('rs~r~A2Fs) sin(/) - ( K ~ ' s f i a  2 )  y---j--~ + ~'s~r~a2FBias 
1 +y~2 

(~--~2)(-~A 2yi+l-2yi+yi-1 
+ dZ NLF (2) 

where NLF is the non-linearity factor (anharmonicity) 
given explicitly in ref. 5. In eqn. (2), L =L/ao is the 
scaled dislocation segment length and d =d/ao is the 
equilibrium (normalized) kink-kink distance. ~ a  rep- 
resents the free oscillation frequency of an undamped 
system in the linear regime (NLF= 1) which is nor- 
malized with respect to the frequency of the harmonic 
drive, i.e. ~A = ¢0°1 oo, where we have the following clas- 
sical expression, ~o ° = (g , , /Mk)  1/2. g k is the stiffness con- 
stant of the coulombic chain in the linear region, F~ 
is the driving force amplitude given by Fs=FK/Fsu and 
F~, is the static force necessary for the displacement 
of a kink for one lattice spacing (given by Fs~ = aoK~). 
We also have K=B~/F~o, and ~-s=%~o, the normalized 
Snoek relaxation time. K is a very important system 
parameter, and represents the coupling ratio between 
the interstitial-kink interaction and the kink-kink mu- 
tual coupling. 

3. The power spectral density associated with the 
kink chain 

In ref. 5, the concept of the internal friction coefficient, 
or better the Q-1 factor, of the dissipative oscillator 
is developed. Here, we are strictly concerned with the 
power spectral density S(¢o) associated with a kink chain 
under non-linear forced vibrations. This can be found 
as follows: (1) generate the discrete time series of 
velocity {Y~}, r =  0-N, by sampling the records at time 
interval A = T/N; (2) calculate the mean value, and then 
generate the new sequence with zero mean; (3) calculate 
the discrete Fourier transform (DFT) of the series, 
{Y[}; (4) calculate the required series of spectral coef- 
ficients by performing the appropriate product: Sk = 
IYk12; (5) calculate estimates of the continuum spectrum 
from the formula S(o~) = T/2~Sk, where o~ = 2,n-k/T rad 

s -1 and ~-/A is the Nyquist frequency that gives the 
upper limit for the reliable frequency range; (6) carry 
out final smoothing by calculating the average of adjacent 
spectral estimates, where T is the record length and 
N is the number of data points. In our computer 
simulations, we have the selection, A = 0.01, N =  213 and 
a smoothing index n = 0, 1, 2, that yields the required 
bandwidth according to the formula, Be= (2n + 1)/T. 
The time series are initially shaped by a cosine taper 
data window. 

4. Results and discussion 

During simulation work, we synthesized a new version 
of the Adams-Moulton procedure, which starts with 
the Runge-Kutta fifth-order, six-stage accurate method. 
The set of ordinary differential equations represented 
by eqn. (2) is a stiff set of differential equations, 
especially when we are dealing with the relaxation 
mode, where the shortest time constant is normally 
given by tl = 2/tB~A 2, which becomes as small as 2 × 10 -4 
and 2× 10 -6 when ~A = 10 and ~A = 100 respectively. 

In Fig. 1, the internal friction coefficient is plotted 
vs. the normalized Snoek relaxation time ÷s = ~'sw or 
the inverse temperature on a semi-logarithmic scale 
for various values of the stress amplitude parameter 
Fs in the region of heavy damping which is called the 
relaxation mode. As can be seen from this figure, the 
kink chain model of dislocation damping shows an 
anomalous stress amplitude dependence, i.e. an increase 
in the stress amplitude results in a decrease in the 
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Fig. 1. Internal friction coefficient plotted as a function of the 
normalized Snoek relaxation time for various values of the stress 
amplitude Fs for the relaxation mode. This figure shows an 
anomalous stress amplitude dependence, and also saturation 
behaviour of the internal friction for high interstitial concentration. 
The sudden jump on the damping curve for F~= 2 is due to the 
atmospheric tearing phenomenon. Parameters: FB~,,=0, L= 100 
and Nk=3 (the normalized resonance frequency I~A=10 ). 
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internal friction coefficient above a certain threshold 
level. Below this threshold stress level, which is directly 
proportional to the concentration of interstitials in the 
bulk, the dislocation damping reaches a saturation stage. 
The sudden jump in the damping curve, labelled as 
Fs= 2, is closely associated with the phenomenon of 
atmospheric tearing [3]. 

The power spectral density, which is taken at the 
peak temperature of the dislocation damping curve 
associated with the saturation stage, namely ~a = 1, for 
several values of the stress amplitude, is depicted in 
Fig. 2. This figure shows very clearly that a strong odd- 
harmonic generation occurs as a sharp peak in the 
vicinity of the natural resonance frequency of the kink 
chain, I~A = 20, together with some broad-band noise, 
at moderately high values of the strain amplitude. For 
higher values of the stress amplitude, such as F~ = 25 
and 50, the system shows even-harmonic generation in 
the vicinity of the driving frequency with a complete 
loss of high-frequency odd harmonics in the presence 
of large-amplitude broad-band noise. 

In Fig. 3, the power spectral density of a kink chain 
with a high natural resonance frequency is given for 
various values of the stress amplitude in order to 
illustrate the dynamic behaviour. This figure clearly 
shows that, if the driver frequency is very much lower 
than the natural frequency of the system, no odd- 
harmonic generation occurs at high frequency, and only 
the formation of broad-band noise, together with the 
first even-harmonic, is observed. 

In order to study the character and fine features of 
the broad-band noise developed at low driving fre- 
quency, such as l~a=50, Fig. 4 is presented which 
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Fig. 2. Power spectral density plotted as a function of the 
normalized frequency (in terms of external drive) for various 
values of the stress amplitude F~. This figure indicates the 
generation of odd harmonics in the vicinity of the natural resonance 
frequency (I~A~20) of the kink chain at moderate values of the 
stress amplitude, and the formation of broad-band noise with 
sharp peaks at very high values of F~. Parameters: FBias=0, 
L=100,  Nk=3 (data recorded at l I B e l  ). 
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Fig. 3. Power spectral density plotted as a function of the 
normalized frequency for various values of the stress amplitude 
F~, where the system is driven in the high natural resonance 
frequency mode, I~A=50. This figure indicates the complete 
depression of odd harmonics, and the generation of broad-band 
noise shifting towards the resonance f requen~ region. Parameters: 
FBias=0, L=100,  Nk=3 (data recorded at f iB=l ) .  
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Fig. 4. Power spectral density plotted on a semi-logarithmic scale 
as a function of the normalized frequency for the moderate stress 
amplitude F~=5 and relatively low driving frequency I~A=50. 
This figure shows broad-band noise at high frequencies with 
relatively weak, but sharp, spectral lines. Parameters: FBi,=0,  
L =  100, Nk=3 (data recorded at ~B = 1; smoothing index, 2). 

shows the chaotic behaviour of the system at relatively 
moderate values of the stress amplitude, Fs---5. The 
sharp peaks, which are more clearly detected in the 
linear plot, are due to periodic states which may be 
related to a general class of recursion relations studied 
by Feigenbaum [7]. 

5. Conclusions 

We have shown that high-frequency harmonic gen- 
eration and chaotic behaviour are expected to occur 
in strongly non-linear dissipative systems in the presence 
of periodic fields. The phenomena described may be 
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found in solids whose anharmonic (or non-linear dis- 
sipative) degree of freedom can couple to a periodic 
field. Two probable candidates are weakly pinned charge 
density waves (CDW) in anisotropic solids [8] and 
superionic conductors [9]. 
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